# organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# 3-[2-(1,3-Benzothiazol-2-ylsulfanyl)ethyl]-1.3-oxazolidin-2-one

### Cong-Hui Ma,<sup>a</sup> Xiao-Feng Li,<sup>b</sup> Yan An<sup>b</sup> and Yong-Hong Wen<sup>a</sup>\*

<sup>a</sup>College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Oingdao 266042, People's Republic of China, and <sup>b</sup>Institute of Marine Materials Science and Engineering, Shanghai Maritime University, Shanghai 201305, People's Republic of China

Correspondence e-mail: wenyyhh@126.com

Received 21 July 2010; accepted 25 August 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.039; wR factor = 0.111; data-to-parameter ratio = 14.7.

The title compound, C<sub>12</sub>H<sub>12</sub>N<sub>2</sub>S<sub>2</sub>O<sub>2</sub>, consists of a benzothiazole group and a oxazolidin-1-one linked via a flexible ethane-1,2-diyl spacer. The benzothiazole group and the oxazolidine ring are each almost planar [with maximum deviations of 0.007 (2) and 0.044 (3) Å, respectively] and make a dihedral angle of 9.35  $(10)^{\circ}$ . In the crystal structure, adjacent molecules were connected through  $C-H\cdots O$  and  $C-H\cdots N$  hydrogen bonds, and further extended into a three-dimensional network structure through intermolecular aromatic  $\pi$ - $\pi$  stacking interactions in which the centroid-centroid distance is 3.590 (1) Å.

#### **Related literature**

For background to the applications of 2-oxazolidinones, see: Ippolito et al. (2008); Mullera et al. (1999).



#### **Experimental**

Crystal data C12H12N2O2S2  $M_r = 280.36$ 

Triclinic, P1

a = 6.5804 (4) Å

b = 7.8331 (5) Å Z = 2c = 12.5890(7) ÅCu  $K\alpha$  radiation  $\mu = 3.83 \text{ mm}^{-1}$  $\alpha = 99.864 (5)^{\circ}$  $\beta = 97.715(5)^{\circ}$ T = 293 K $\gamma = 97.011 (5)^{\circ}$  $0.16 \times 0.14 \times 0.10 \ \mathrm{mm}$ V = 626.49 (7) Å<sup>3</sup> Data collection Oxford Diffraction Xcalibur 4029 measured reflections

| Sapphire3 diffractometer              | 2396 independent reflections           |
|---------------------------------------|----------------------------------------|
| Absorption correction: multi-scan     | 2081 reflections with $I > 2\sigma(I)$ |
| (CrysAlis RED; Oxford                 | $R_{\rm int} = 0.020$                  |
| Diffraction, 2005)                    |                                        |
| $T_{min} = 0.572$ , $T_{max} = 1.000$ |                                        |

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.039$ | 163 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.111$               | H-atom parameters constrained                              |
| S = 1.05                        | $\Delta \rho_{\rm max} = 0.25 \text{ e } \text{\AA}^{-3}$  |
| 2396 reflections                | $\Delta \rho_{\rm min} = -0.38 \text{ e } \text{\AA}^{-3}$ |

#### Table 1 Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                                                   | D-H                  | $H \cdot \cdot \cdot A$ | $D \cdots A$                        | $D - \mathbf{H} \cdots A$ |
|--------------------------------------------------------------------|----------------------|-------------------------|-------------------------------------|---------------------------|
| $C11-H11B\cdots O1^{i}$ $C3-H3\cdots O1^{ii}$ $C5-H5\cdots N1^{i}$ | 0.97<br>0.93<br>0.93 | 2.58<br>2.59<br>2.54    | 3.466 (3)<br>3.282 (2)<br>3.445 (2) | 152<br>132<br>163         |
|                                                                    |                      |                         |                                     |                           |

Symmetry codes: (i) x + 1, y, z; (ii) x, y - 1, z - 1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2005); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

The authors acknowledge the Project of Shanghai Municipal Education Commission (09YZ245, 10YZ111, 10ZZ98), the 'Chen Guang' project supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation (09 C G52) and the State Key Laboratory of Pollution Control and Resource Reuse Foundation (PCRRF09001) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BV2154).

#### References

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.

Ippolito, J. A., Kanyo, Z. F., Wang, D., Franceschi, F. J., Moore, P. B., Steitz, T. A. & Duffy, E. M. (2008). J. Med. Chem. 51, 3353-3356.

Mullera, M. & Schimzb, K. L. (1999). Cell. Mol. Life Sci. 56, 280-285.

Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2010). E66, o2472 [doi:10.1107/S1600536810034264]

## 3-[2-(1,3-Benzothiazol-2-ylsulfanyl)ethyl]-1,3-oxazolidin-2-one

## C.-H. Ma, X.-F. Li, Y. An and Y.-H. Wen

### Comment

N-substituted 2-oxazolidinones have been widely used as antibiotics which are effective against gram-positive bacteria (Ippolito *et al.*, 2008; Mullera *et al.*, 1999). In this article we provide a new synthetic route of a 2-oxazolidinone derivative. Even though the reaction mechanism has not been established, the reproducibility and high yield of the reaction should prove useful for the synthesis of this type of compound.

Herein, we report the synthesis and structure of the title compound, namely 3-(2-(benzo[d]thiazol-2-ylthio)ethyl)-oxazolidin-2-one (Fig.1). As shown in Fig. 2, a two-dimensional supramolecular network was formed by hydrogen bonds (Table 1) and weak  $\pi$ - $\pi$  stacking interactions between the phenyl rings and the thiazolyl rings of adjacent molecules with a centroid-centroid distances of 3.590 Å along *b* direction.

### Experimental

A mixture of 2-mercaptobenzothiazole (6.69 g, 0.04 mol), potassium carbonate (8.29 g, 0.06 mol) and ethanol (250 ml) was heated and stirred in a 500 ml flask. Bis(2-chloroethyl)amine hydrochloride (7.14 g, 0.04 mol, dissolved in 100 ml ethanol) was added dropwise into the flask when the mixture was heated to 353 K, and the mixture was further stired at 353 K for 8 h. After cooling, the precipitate was filtered, washed with ethanol and water, and recrystallized from ethanol to obtain a flaxen powder. Yield: 68%. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz):3.60 (t, 2H), 3.74 (m, 4H), 4.3 (t, 2H), 7.45 (m, 2H), 7.77 (d, 1H), 7.79 (d, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz): 31.17, 43.81, 45.58, 61.97, 121.40, 121.41, 124.55, 126.20, 135.26, 152.86, 158.40, 165.71.

#### Refinement

The H atoms were placed at calculated positions in the riding model approximation (C—H 0.95–0.99 Å), with their temperature factors were set to 1.2 times those of the equivalent isotropic temperature factors of the parent atoms.

#### **Figures**



Fig. 1. The structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.



Fig. 2. The three-dimensional structure by molecular packing, showing the hydrogen bonds as blue dashed lines, and  $\pi$ - $\pi$  stacking interactions as red dashed lines.

## 3-[2-(1,3-Benzothiazol-2-ylsulfanyl)ethyl]-1,3-oxazolidin-2-one

| $C_{12}H_{12}N_2O_2S_2$         | Z = 2                                          |
|---------------------------------|------------------------------------------------|
| $M_r = 280.36$                  | F(000) = 292                                   |
| Triclinic, <i>P</i> 1           | $D_{\rm x} = 1.486 {\rm ~Mg~m}^{-3}$           |
| Hall symbol: -P 1               | Cu K $\alpha$ radiation, $\lambda = 1.54184$ Å |
| a = 6.5804 (4)  Å               | Cell parameters from 2669 reflections          |
| b = 7.8331 (5)  Å               | $\theta = 3.6 - 72.2^{\circ}$                  |
| c = 12.5890 (7)  Å              | $\mu = 3.83 \text{ mm}^{-1}$                   |
| $\alpha = 99.864 \ (5)^{\circ}$ | T = 293  K                                     |
| $\beta = 97.715 \ (5)^{\circ}$  | Rhombus, colourless                            |
| $\gamma = 97.011 \ (5)^{\circ}$ | $0.16 \times 0.14 \times 0.10 \text{ mm}$      |
| $V = 626.49 (7) \text{ Å}^3$    |                                                |

#### Data collection

| Oxford Diffraction Xcalibur Sapphire3<br>diffractometer                                | 2396 independent reflections                                              |
|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Radiation source: Enhance (Cu) X-ray Source                                            | 2081 reflections with $I > 2\sigma(I)$                                    |
| graphite                                                                               | $R_{\text{int}} = 0.020$                                                  |
| Detector resolution: 16.0355 pixels mm <sup>-1</sup>                                   | $\theta_{\text{max}} = 72.4^{\circ}, \ \theta_{\text{min}} = 3.6^{\circ}$ |
| ω scans                                                                                | $h = -7 \rightarrow 5$                                                    |
| Absorption correction: multi-scan<br>( <i>CrysAlis RED</i> ; Oxford Diffraction, 2005) | $k = -9 \rightarrow 8$                                                    |
| $T_{\min} = 0.572, \ T_{\max} = 1.000$                                                 | $l = -15 \rightarrow 15$                                                  |
| 4029 measured reflections                                                              |                                                                           |

#### Refinement

| Refinement on $F^2$             | Primary atom site location: structure-invariant direct methods                    |
|---------------------------------|-----------------------------------------------------------------------------------|
| Least-squares matrix: full      | Secondary atom site location: difference Fourier map                              |
| $R[F^2 > 2\sigma(F^2)] = 0.039$ | Hydrogen site location: inferred from neighbouring sites                          |
| $wR(F^2) = 0.111$               | H-atom parameters constrained                                                     |
| <i>S</i> = 1.05                 | $w = 1/[\sigma^2(F_0^2) + (0.081P)^2 + 0.008P]$<br>where $P = (F_0^2 + 2F_c^2)/3$ |
| 2396 reflections                | $(\Delta/\sigma)_{max} < 0.001$                                                   |

| 163 parameters | $\Delta \rho_{max} = 0.25 \text{ e } \text{\AA}^{-3}$      |
|----------------|------------------------------------------------------------|
| 0 restraints   | $\Delta \rho_{\rm min} = -0.38 \text{ e } \text{\AA}^{-3}$ |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

| S1         0.35142 (6)         0.68528 (6)         0.47728 (3)         0.04252 (17)           S2         -0.03291 (7)         0.79117 (6)         0.57333 (4)         0.04677 (17)           O1         0.2992 (3)         1.2011 (2)         0.90981 (13)         0.0693 (5)           O2         0.6287 (3)         1.1616 (2)         0.95686 (12)         0.0661 (4)           N1         -0.0218 (2)         0.6472 (2)         0.36963 (12)         0.0407 (3)           N2         0.4734 (2)         1.0512 (2)         0.78894 (12)         0.0465 (4)           C1         0.1020 (3)         0.5093 (3)         0.18583 (15)         0.0466 (4)           H2         -0.1048         0.5029         0.1556         0.056*           C3         0.1746 (3)         0.4474 (3)         0.12252 (15)         0.0500 (4)           H3         0.1301         0.3982         0.0492         0.060*           C4         0.3836 (3)         0.4578 (2)         0.16706 (16)         0.474 (4)           H4         0.4757         0.4152         0.1228         0.057*           C5         0.4548 (3)         0.5301 (2)         0.4551 (14)         0.0370 (4)           C7         0.0866 (3)         0.7046 (2)         0.455                                                                                                     |      | x            | У           | Ζ            | $U_{\rm iso}*/U_{\rm eq}$ |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------|-------------|--------------|---------------------------|
| S2         -0.03291 (7)         0.79117 (6)         0.57333 (4)         0.04677 (17)           O1         0.2992 (3)         1.2011 (2)         0.90981 (13)         0.0693 (5)           O2         0.6287 (3)         1.1616 (2)         0.95686 (12)         0.0661 (4)           N1         -0.0218 (2)         0.6472 (2)         0.36963 (12)         0.0467 (4)           N2         0.4734 (2)         1.0512 (2)         0.78894 (12)         0.0465 (4)           C1         0.1020 (3)         0.5914 (2)         0.29599 (14)         0.0370 (4)           C2         0.0334 (3)         0.5093 (3)         0.18583 (15)         0.0466 (4)           H2         -0.1048         0.5029         0.1556         0.056*           C3         0.1746 (3)         0.4474 (3)         0.12252 (15)         0.0500 (4)           H3         0.1301         0.3982         0.0492         0.060*           C4         0.3836 (3)         0.4578 (2)         0.16706 (16)         0.0474 (4)           H4         0.4757         0.4152         0.1228         0.057*           C5         0.4548 (3)         0.5301 (2)         0.27549 (15)         0.0424 (4)           H5         0.5937         0.5382         0.33941 (14) </td <td>S1</td> <td>0.35142 (6)</td> <td>0.68528 (6)</td> <td>0.47728 (3)</td> <td>0.04252 (17)</td> | S1   | 0.35142 (6)  | 0.68528 (6) | 0.47728 (3)  | 0.04252 (17)              |
| O10.2992 (3)1.2011 (2)0.90981 (13)0.0693 (5)O20.6287 (3)1.1616 (2)0.95686 (12)0.0661 (4)N1-0.0218 (2)0.6472 (2)0.36963 (12)0.0407 (3)N20.4734 (2)1.0512 (2)0.78894 (12)0.0465 (4)C10.1020 (3)0.5814 (2)0.29599 (14)0.0370 (4)C20.0334 (3)0.5093 (3)0.18583 (15)0.0466 (4)H2-0.10480.50290.15560.056*C30.1746 (3)0.4474 (3)0.12252 (15)0.0500 (4)H30.13010.39820.04920.66*C40.3836 (3)0.4578 (2)0.16706 (16)0.0474 (4)H40.47570.41520.12280.057*C50.4548 (3)0.5301 (2)0.27549 (15)0.0424 (4)H50.59370.53820.30500.051*C60.3115 (3)0.5908 (2)0.33941 (14)0.0358 (3)C70.0866 (3)0.7046 (2)0.46521 (14)0.0370 (4)C80.1759 (3)0.8424 (2)0.68809 (14)0.0414 (4)H8A0.11740.84410.75490.053*C90.3115 (3)1.0177 (2)0.69552 (15)0.047* (4)H9A0.37291.01660.62960.057*C100.6791 (3)1.0058 (3)0.78669 (19)0.0533 (5)H10A0.7550.88060.76420.664*H10B0.67550.88060.76420.664* <trr>C11<t< td=""><td>S2</td><td>-0.03291 (7)</td><td>0.79117 (6)</td><td>0.57333 (4)</td><td>0.04677 (17)</td></t<></trr>                                                                                                                                                                                                                                                                                                                                                 | S2   | -0.03291 (7) | 0.79117 (6) | 0.57333 (4)  | 0.04677 (17)              |
| O20.6287 (3)1.1616 (2)0.95686 (12)0.0661 (4)N1-0.0218 (2)0.6472 (2)0.36963 (12)0.0407 (3)N20.4734 (2)1.0512 (2)0.78894 (12)0.0465 (4)C10.1020 (3)0.5814 (2)0.29599 (14)0.0370 (4)C20.0334 (3)0.5093 (3)0.18583 (15)0.0466 (4)H2-0.10480.50290.15560.056*C30.1746 (3)0.4474 (3)0.12252 (15)0.0500 (4)H30.13010.39820.04920.660*C40.3836 (3)0.4578 (2)0.16706 (16)0.0474 (4)H40.47570.41520.12280.057*C50.4548 (3)0.5301 (2)0.27549 (15)0.0424 (4)H50.59370.53820.30500.051*C60.3115 (3)0.5908 (2)0.33941 (14)0.0358 (3)C70.0866 (3)0.7046 (2)0.46521 (14)0.0370 (4)C80.1759 (3)0.8424 (2)0.68809 (14)0.0414 (4)H8A0.11740.84410.75490.053*C90.3115 (3)1.0177 (2)0.69552 (15)0.0474 (4)H9A0.37291.01660.62960.057*C100.6791 (3)1.0058 (3)0.78669 (19)0.0533 (5)H10A0.7550.88060.76420.664*C110.7754 (4)1.0685 (4)0.9048 (2)0.6633 (6)H11A0.80230.96980.39300.82*C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 01   | 0.2992 (3)   | 1.2011 (2)  | 0.90981 (13) | 0.0693 (5)                |
| N1-0.0218 (2)0.6472 (2)0.36963 (12)0.0407 (3)N20.4734 (2)1.0512 (2)0.78894 (12)0.0465 (4)C10.1020 (3)0.5814 (2)0.29599 (14)0.0370 (4)C20.0334 (3)0.5093 (3)0.18583 (15)0.0466 (4)H2-0.10480.50290.15560.056*C30.1746 (3)0.4474 (3)0.12252 (15)0.0500 (4)H30.13010.39820.04920.060*C40.3836 (3)0.4578 (2)0.16706 (16)0.0474 (4)H40.47570.41520.12280.057*C50.4548 (3)0.5301 (2)0.27549 (15)0.0424 (4)H50.59370.53820.30500.051*C60.3115 (3)0.5908 (2)0.33941 (14)0.0370 (4)C80.1759 (3)0.8424 (2)0.68809 (14)0.0441 (4)H8A0.11740.84410.75490.053*C90.3115 (3)1.0177 (2)0.68240.053*C90.3115 (3)1.0177 (2)0.6852 (15)0.0474 (4)H9A0.37291.01660.62960.057*H9B0.22671.11090.70140.057*C100.6791 (3)1.058 (3)0.78669 (19)0.0533 (5)H10A0.75201.06680.73890.064*H10B0.67550.88060.76420.0683 (6)H11A0.80230.96980.93900.82*H11B0.90541.1428 (2)0.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | O2   | 0.6287 (3)   | 1.1616 (2)  | 0.95686 (12) | 0.0661 (4)                |
| N20.4734 (2)1.0512 (2)0.78894 (12)0.0465 (4)C10.1020 (3)0.5814 (2)0.29599 (14)0.0370 (4)C20.0334 (3)0.5093 (3)0.18583 (15)0.0466 (4)H2-0.10480.50290.15560.056*C30.1746 (3)0.4474 (3)0.12252 (15)0.0500 (4)H30.13010.39820.04920.060*C40.3836 (3)0.4578 (2)0.16706 (16)0.0474 (4)H40.47570.41520.12280.057*C50.4548 (3)0.5301 (2)0.27549 (15)0.0424 (4)H50.59370.53820.30500.051*C60.3115 (3)0.5908 (2)0.33941 (14)0.0358 (3)C70.0866 (3)0.7046 (2)0.46521 (14)0.0370 (4)C80.1759 (3)0.8424 (2)0.68809 (14)0.0441 (4)H8A0.11740.84410.75490.053*C90.3115 (3)1.0177 (2)0.69552 (15)0.0474 (4)H9A0.37291.01660.62960.057*H9B0.22671.11090.70140.057*C100.6791 (3)1.0058 (3)0.78669 (19)0.0533 (5)H10A0.75201.06680.73890.064*H10B0.67550.88060.76420.064*C110.7754 (4)1.0685 (4)0.9048 (2)0.6833 (6)H11A0.80230.96980.93900.82*H11B0.90541.1428 (2) <t< td=""><td>N1</td><td>-0.0218 (2)</td><td>0.6472 (2)</td><td>0.36963 (12)</td><td>0.0407 (3)</td></t<>                                                                                                                                                                                                                                                                                                                                                                                | N1   | -0.0218 (2)  | 0.6472 (2)  | 0.36963 (12) | 0.0407 (3)                |
| C10.1020 (3)0.5814 (2)0.29599 (14)0.0370 (4)C20.0334 (3)0.5093 (3)0.18583 (15)0.0466 (4)H2-0.10480.50290.15560.056*C30.1746 (3)0.4474 (3)0.12252 (15)0.0500 (4)H30.13010.39820.04920.660*C40.3836 (3)0.4578 (2)0.16706 (16)0.0474 (4)H40.47570.41520.12280.057*C50.4548 (3)0.5301 (2)0.27549 (15)0.0424 (4)H50.59370.53820.30500.051*C60.3115 (3)0.5908 (2)0.33941 (14)0.0358 (3)C70.0866 (3)0.7046 (2)0.46521 (14)0.0370 (4)C80.1759 (3)0.8424 (2)0.68809 (14)0.0411 (4)H8A0.11740.84410.75490.053*C90.3115 (3)1.0177 (2)0.69552 (15)0.0474 (4)H9A0.37291.01660.62960.057*H9B0.22671.11090.70140.057*C100.6791 (3)1.0058 (3)0.78669 (19)0.0533 (5)H10A0.75200.88060.76420.064*C110.7754 (4)1.0685 (4)0.9048 (2)0.0683 (6)H11B0.90541.14530.91060.082*C120.4514 (3)1.1428 (2)0.88637 (15)0.480 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N2   | 0.4734 (2)   | 1.0512 (2)  | 0.78894 (12) | 0.0465 (4)                |
| C20.0334 (3)0.5093 (3)0.18583 (15)0.0466 (4)H2-0.10480.50290.15560.056*C30.1746 (3)0.4474 (3)0.12252 (15)0.0500 (4)H30.13010.39820.04920.060*C40.3836 (3)0.4578 (2)0.16706 (16)0.0474 (4)H40.47570.41520.12280.057*C50.4548 (3)0.5301 (2)0.27549 (15)0.0424 (4)H50.59370.53820.30500.051*C60.3115 (3)0.5908 (2)0.33941 (14)0.0358 (3)C70.0866 (3)0.7046 (2)0.46521 (14)0.0370 (4)C80.1759 (3)0.8424 (2)0.68809 (14)0.0441 (4)H8A0.11740.84410.75490.053*C90.3115 (3)1.0177 (2)0.69552 (15)0.0474 (4)H9A0.37291.01660.62960.057*H9B0.22671.11090.70140.057*C100.6791 (3)1.0058 (3)0.78669 (19)0.533 (5)H10A0.75201.06680.73890.064*H10B0.67550.88060.76420.064*C110.7754 (4)1.0685 (4)0.9048 (2)0.0683 (6)H11A0.80230.96980.93900.822*H11B0.90541.1428 (2)0.88637 (15)0.0480 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C1   | 0.1020 (3)   | 0.5814 (2)  | 0.29599 (14) | 0.0370 (4)                |
| H2-0.10480.50290.15560.056*C30.1746 (3)0.4474 (3)0.12252 (15)0.0500 (4)H30.13010.39820.04920.060*C40.3836 (3)0.4578 (2)0.16706 (16)0.0474 (4)H40.47570.41520.12280.057*C50.4548 (3)0.5301 (2)0.27549 (15)0.0424 (4)H50.59370.53820.30500.051*C60.3115 (3)0.5908 (2)0.33941 (14)0.0358 (3)C70.0866 (3)0.7046 (2)0.46521 (14)0.0370 (4)C80.1759 (3)0.8424 (2)0.68809 (14)0.0441 (4)H8A0.11740.84410.75490.053*C90.3115 (3)1.0177 (2)0.69552 (15)0.0474 (4)H9A0.37291.01660.62960.057*H9B0.22671.11090.70140.057*C100.6791 (3)1.0058 (3)0.78669 (19)0.533 (5)H10A0.75201.06680.73890.064*H10B0.67550.88060.76420.064*C110.754 (4)1.0685 (4)0.9048 (2)0.0683 (6)H11A0.80230.96980.33900.82*H11B0.90541.1423 (2)0.88637 (15)0.0480 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C2   | 0.0334 (3)   | 0.5093 (3)  | 0.18583 (15) | 0.0466 (4)                |
| C30.1746 (3)0.4474 (3)0.12252 (15)0.0500 (4)H30.13010.39820.04920.060*C40.3836 (3)0.4578 (2)0.16706 (16)0.0474 (4)H40.47570.41520.12280.057*C50.4548 (3)0.5301 (2)0.27549 (15)0.0424 (4)H50.59370.53820.30500.051*C60.3115 (3)0.5908 (2)0.33941 (14)0.0358 (3)C70.0866 (3)0.7046 (2)0.46521 (14)0.0370 (4)C80.1759 (3)0.8424 (2)0.68809 (14)0.0441 (4)H8A0.11740.84410.75490.053*C90.3115 (3)1.0177 (2)0.69552 (15)0.0474 (4)H9A0.37291.01660.62960.057*H9B0.22671.11090.70140.057*C100.6791 (3)1.0058 (3)0.78669 (19)0.0533 (5)H10A0.75201.06680.73890.064*H11A0.80230.96980.93900.082*H11B0.90541.14530.91060.082*C120.4514 (3)1.1428 (2)0.88637 (15)0.0480 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H2   | -0.1048      | 0.5029      | 0.1556       | 0.056*                    |
| H30.13010.39820.04920.060*C40.3836 (3)0.4578 (2)0.16706 (16)0.0474 (4)H40.47570.41520.12280.057*C50.4548 (3)0.5301 (2)0.27549 (15)0.0424 (4)H50.59370.53820.30500.051*C60.3115 (3)0.5908 (2)0.33941 (14)0.0358 (3)C70.0866 (3)0.7046 (2)0.46521 (14)0.0370 (4)C80.1759 (3)0.8424 (2)0.68809 (14)0.0441 (4)H8A0.11740.84410.75490.053*C90.3115 (3)1.0177 (2)0.69552 (15)0.0474 (4)H9A0.37291.01660.62960.057*H9B0.22671.11090.70140.057*C100.6791 (3)1.0058 (3)0.78669 (19)0.0533 (5)H10A0.75200.88060.76420.064*C110.7754 (4)1.0685 (4)0.9048 (2)0.0683 (6)H11A0.80230.96980.93900.082*H11B0.90541.1423 (2)0.88637 (15)0.4480 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C3   | 0.1746 (3)   | 0.4474 (3)  | 0.12252 (15) | 0.0500 (4)                |
| C40.3836 (3)0.4578 (2)0.16706 (16)0.0474 (4)H40.47570.41520.12280.057*C50.4548 (3)0.5301 (2)0.27549 (15)0.0424 (4)H50.59370.53820.30500.051*C60.3115 (3)0.5908 (2)0.33941 (14)0.0358 (3)C70.0866 (3)0.7046 (2)0.46521 (14)0.0370 (4)C80.1759 (3)0.8424 (2)0.68809 (14)0.0441 (4)H8A0.11740.84410.75490.053*C90.3115 (3)1.0177 (2)0.69552 (15)0.0474 (4)H9A0.37291.01660.62960.057*H9B0.22671.11090.70140.057*C100.6791 (3)1.0058 (3)0.78669 (19)0.533 (5)H10A0.75201.06680.73890.064*H10B0.67550.88060.76420.0683 (6)H11A0.80230.96980.93900.82*H11B0.90541.14530.91060.82*C120.4514 (3)1.1428 (2)0.86637 (15)0.0480 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Н3   | 0.1301       | 0.3982      | 0.0492       | 0.060*                    |
| H40.47570.41520.12280.057*C50.4548 (3)0.5301 (2)0.27549 (15)0.0424 (4)H50.59370.53820.30500.051*C60.3115 (3)0.5908 (2)0.33941 (14)0.0358 (3)C70.0866 (3)0.7046 (2)0.46521 (14)0.0370 (4)C80.1759 (3)0.8424 (2)0.68809 (14)0.0441 (4)H8A0.11740.84410.75490.053*C90.3115 (3)1.0177 (2)0.69552 (15)0.0474 (4)H9A0.37291.01660.62960.057*H9B0.22671.11090.70140.057*C100.6791 (3)1.0058 (3)0.78669 (19)0.533 (5)H10A0.75201.06680.73890.064*H10B0.67550.88060.76420.0683 (6)H11A0.80230.96980.93900.082*H11B0.90541.1428 (2)0.88637 (15)0.0480 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C4   | 0.3836 (3)   | 0.4578 (2)  | 0.16706 (16) | 0.0474 (4)                |
| C50.4548 (3)0.5301 (2)0.27549 (15)0.0424 (4)H50.59370.53820.30500.051*C60.3115 (3)0.5908 (2)0.33941 (14)0.0358 (3)C70.0866 (3)0.7046 (2)0.46521 (14)0.0370 (4)C80.1759 (3)0.8424 (2)0.68809 (14)0.0441 (4)H8A0.11740.84410.75490.053*H8B0.26210.75030.68240.053*C90.3115 (3)1.0177 (2)0.69552 (15)0.0474 (4)H9A0.37291.01660.62960.057*H9B0.22671.11090.70140.057*C100.6791 (3)1.0058 (3)0.78669 (19)0.0533 (5)H10A0.75201.06680.73890.064*H10B0.67550.88060.76420.0683 (6)H11A0.80230.96980.93900.082*H11B0.90541.14530.91060.822*C120.4514 (3)1.1428 (2)0.88637 (15)0.0480 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H4   | 0.4757       | 0.4152      | 0.1228       | 0.057*                    |
| H50.59370.53820.30500.051*C60.3115 (3)0.5908 (2)0.33941 (14)0.0358 (3)C70.0866 (3)0.7046 (2)0.46521 (14)0.0370 (4)C80.1759 (3)0.8424 (2)0.68809 (14)0.0441 (4)H8A0.11740.84410.75490.053*H8B0.26210.75030.68240.053*C90.3115 (3)1.0177 (2)0.69552 (15)0.0474 (4)H9A0.37291.01660.62960.057*H9B0.22671.11090.70140.057*C100.6791 (3)1.0058 (3)0.78669 (19)0.0533 (5)H10A0.75201.06680.74220.064*C110.7754 (4)1.0685 (4)0.9048 (2)0.0683 (6)H11B0.90541.14530.91060.082*C120.4514 (3)1.1428 (2)0.86637 (15)0.4480 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C5   | 0.4548 (3)   | 0.5301 (2)  | 0.27549 (15) | 0.0424 (4)                |
| C60.3115 (3)0.5908 (2)0.33941 (14)0.0358 (3)C70.0866 (3)0.7046 (2)0.46521 (14)0.0370 (4)C80.1759 (3)0.8424 (2)0.68809 (14)0.0441 (4)H8A0.11740.84410.75490.053*H8B0.26210.75030.68240.053*C90.3115 (3)1.0177 (2)0.69552 (15)0.0474 (4)H9A0.37291.01660.62960.057*H9B0.22671.11090.70140.057*C100.6791 (3)1.0058 (3)0.78669 (19)0.0533 (5)H10A0.75201.06680.73890.064*H10B0.67550.88060.76420.0683 (6)H11A0.80230.96980.93900.082*H11B0.90541.1428 (2)0.88637 (15)0.0480 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Н5   | 0.5937       | 0.5382      | 0.3050       | 0.051*                    |
| C70.0866 (3)0.7046 (2)0.46521 (14)0.0370 (4)C80.1759 (3)0.8424 (2)0.68809 (14)0.0441 (4)H8A0.11740.84410.75490.053*H8B0.26210.75030.68240.053*C90.3115 (3)1.0177 (2)0.69552 (15)0.0474 (4)H9A0.37291.01660.62960.057*H9B0.22671.11090.70140.057*C100.6791 (3)1.0058 (3)0.78669 (19)0.0533 (5)H10A0.75201.06680.73890.064*H10B0.67550.88060.76420.064*C110.7754 (4)1.0685 (4)0.9048 (2)0.0683 (6)H11A0.80230.96980.93900.082*H11B0.90541.1423 (2)0.88637 (15)0.0480 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C6   | 0.3115 (3)   | 0.5908 (2)  | 0.33941 (14) | 0.0358 (3)                |
| C80.1759 (3)0.8424 (2)0.68809 (14)0.0441 (4)H8A0.11740.84410.75490.053*H8B0.26210.75030.68240.053*C90.3115 (3)1.0177 (2)0.69552 (15)0.0474 (4)H9A0.37291.01660.62960.057*H9B0.22671.11090.70140.057*C100.6791 (3)1.0058 (3)0.78669 (19)0.0533 (5)H10A0.75201.06680.73890.064*H10B0.67550.88060.76420.064*C110.7754 (4)1.0685 (4)0.9048 (2)0.0683 (6)H11A0.80230.96980.93900.082*H11B0.90541.1423 (2)0.88637 (15)0.0480 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C7   | 0.0866 (3)   | 0.7046 (2)  | 0.46521 (14) | 0.0370 (4)                |
| H8A0.11740.84410.75490.053*H8B0.26210.75030.68240.053*C90.3115 (3)1.0177 (2)0.69552 (15)0.0474 (4)H9A0.37291.01660.62960.057*H9B0.22671.11090.70140.057*C100.6791 (3)1.0058 (3)0.78669 (19)0.0533 (5)H10A0.75201.06680.73890.064*H10B0.67550.88060.76420.064*C110.7754 (4)1.0685 (4)0.9048 (2)0.0683 (6)H11A0.80230.96980.93900.082*H11B0.90541.14530.91060.082*C120.4514 (3)1.1428 (2)0.88637 (15)0.0480 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C8   | 0.1759 (3)   | 0.8424 (2)  | 0.68809 (14) | 0.0441 (4)                |
| H8B0.26210.75030.68240.053*C90.3115 (3)1.0177 (2)0.69552 (15)0.0474 (4)H9A0.37291.01660.62960.057*H9B0.22671.11090.70140.057*C100.6791 (3)1.0058 (3)0.78669 (19)0.0533 (5)H10A0.75201.06680.73890.064*H10B0.67550.88060.76420.064*C110.7754 (4)1.0685 (4)0.9048 (2)0.0683 (6)H11A0.80230.96980.93900.082*H11B0.90541.14530.91060.082*C120.4514 (3)1.1428 (2)0.88637 (15)0.0480 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | H8A  | 0.1174       | 0.8441      | 0.7549       | 0.053*                    |
| C90.3115 (3)1.0177 (2)0.69552 (15)0.0474 (4)H9A0.37291.01660.62960.057*H9B0.22671.11090.70140.057*C100.6791 (3)1.0058 (3)0.78669 (19)0.0533 (5)H10A0.75201.06680.73890.064*H10B0.67550.88060.76420.064*C110.7754 (4)1.0685 (4)0.9048 (2)0.0683 (6)H11A0.80230.96980.93900.082*H11B0.90541.14530.91060.082*C120.4514 (3)1.1428 (2)0.88637 (15)0.0480 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H8B  | 0.2621       | 0.7503      | 0.6824       | 0.053*                    |
| H9A0.37291.01660.62960.057*H9B0.22671.11090.70140.057*C100.6791 (3)1.0058 (3)0.78669 (19)0.0533 (5)H10A0.75201.06680.73890.064*H10B0.67550.88060.76420.064*C110.7754 (4)1.0685 (4)0.9048 (2)0.0683 (6)H11A0.80230.96980.93900.082*H11B0.90541.14530.91060.082*C120.4514 (3)1.1428 (2)0.88637 (15)0.0480 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | С9   | 0.3115 (3)   | 1.0177 (2)  | 0.69552 (15) | 0.0474 (4)                |
| H9B0.22671.11090.70140.057*C100.6791 (3)1.0058 (3)0.78669 (19)0.0533 (5)H10A0.75201.06680.73890.064*H10B0.67550.88060.76420.064*C110.7754 (4)1.0685 (4)0.9048 (2)0.0683 (6)H11A0.80230.96980.93900.082*H11B0.90541.14530.91060.082*C120.4514 (3)1.1428 (2)0.88637 (15)0.0480 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H9A  | 0.3729       | 1.0166      | 0.6296       | 0.057*                    |
| C100.6791 (3)1.0058 (3)0.78669 (19)0.0533 (5)H10A0.75201.06680.73890.064*H10B0.67550.88060.76420.064*C110.7754 (4)1.0685 (4)0.9048 (2)0.0683 (6)H11A0.80230.96980.93900.082*H11B0.90541.14530.91060.082*C120.4514 (3)1.1428 (2)0.88637 (15)0.0480 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | H9B  | 0.2267       | 1.1109      | 0.7014       | 0.057*                    |
| H10A0.75201.06680.73890.064*H10B0.67550.88060.76420.064*C110.7754 (4)1.0685 (4)0.9048 (2)0.0683 (6)H11A0.80230.96980.93900.082*H11B0.90541.14530.91060.082*C120.4514 (3)1.1428 (2)0.88637 (15)0.0480 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C10  | 0.6791 (3)   | 1.0058 (3)  | 0.78669 (19) | 0.0533 (5)                |
| H10B0.67550.88060.76420.064*C110.7754 (4)1.0685 (4)0.9048 (2)0.0683 (6)H11A0.80230.96980.93900.082*H11B0.90541.14530.91060.082*C120.4514 (3)1.1428 (2)0.88637 (15)0.0480 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | H10A | 0.7520       | 1.0668      | 0.7389       | 0.064*                    |
| C110.7754 (4)1.0685 (4)0.9048 (2)0.0683 (6)H11A0.80230.96980.93900.082*H11B0.90541.14530.91060.082*C120.4514 (3)1.1428 (2)0.88637 (15)0.0480 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H10B | 0.6755       | 0.8806      | 0.7642       | 0.064*                    |
| H11A0.80230.96980.93900.082*H11B0.90541.14530.91060.082*C120.4514 (3)1.1428 (2)0.88637 (15)0.0480 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C11  | 0.7754 (4)   | 1.0685 (4)  | 0.9048 (2)   | 0.0683 (6)                |
| H11B0.90541.14530.91060.082*C120.4514 (3)1.1428 (2)0.88637 (15)0.0480 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | H11A | 0.8023       | 0.9698      | 0.9390       | 0.082*                    |
| C12 0.4514 (3) 1.1428 (2) 0.88637 (15) 0.0480 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H11B | 0.9054       | 1.1453      | 0.9106       | 0.082*                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C12  | 0.4514 (3)   | 1.1428 (2)  | 0.88637 (15) | 0.0480 (4)                |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

# Atomic displacement parameters $(Å^2)$

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$      | $U^{23}$      |
|-----|-------------|-------------|-------------|--------------|---------------|---------------|
| S1  | 0.0296 (2)  | 0.0517 (3)  | 0.0405 (3)  | 0.00659 (18) | -0.00164 (17) | -0.00180 (18) |
| S2  | 0.0372 (3)  | 0.0556 (3)  | 0.0451 (3)  | 0.0092 (2)   | 0.00809 (19)  | -0.0001 (2)   |
| 01  | 0.0739 (11) | 0.0767 (11) | 0.0617 (9)  | 0.0256 (9)   | 0.0276 (8)    | 0.0019 (8)    |
| O2  | 0.0723 (10) | 0.0682 (10) | 0.0476 (8)  | 0.0023 (8)   | -0.0068 (7)   | 0.0007 (7)    |
| N1  | 0.0317 (7)  | 0.0481 (8)  | 0.0408 (8)  | 0.0079 (6)   | 0.0018 (6)    | 0.0062 (6)    |
| N2  | 0.0426 (9)  | 0.0500 (8)  | 0.0431 (8)  | 0.0105 (7)   | 0.0052 (7)    | -0.0030 (7)   |
| C1  | 0.0337 (8)  | 0.0381 (8)  | 0.0395 (8)  | 0.0059 (6)   | 0.0031 (7)    | 0.0097 (7)    |
| C2  | 0.0420 (10) | 0.0542 (10) | 0.0397 (9)  | 0.0055 (8)   | -0.0022 (7)   | 0.0063 (8)    |
| C3  | 0.0567 (11) | 0.0524 (10) | 0.0382 (9)  | 0.0068 (9)   | 0.0046 (8)    | 0.0043 (8)    |
| C4  | 0.0509 (11) | 0.0448 (9)  | 0.0485 (10) | 0.0101 (8)   | 0.0163 (8)    | 0.0055 (8)    |
| C5  | 0.0355 (9)  | 0.0411 (9)  | 0.0497 (10) | 0.0065 (7)   | 0.0073 (7)    | 0.0055 (7)    |
| C6  | 0.0325 (8)  | 0.0348 (7)  | 0.0380 (8)  | 0.0026 (6)   | 0.0021 (6)    | 0.0055 (6)    |
| C7  | 0.0304 (8)  | 0.0379 (8)  | 0.0412 (9)  | 0.0049 (6)   | 0.0027 (7)    | 0.0055 (7)    |
| C8  | 0.0489 (10) | 0.0438 (9)  | 0.0393 (9)  | 0.0074 (8)   | 0.0074 (8)    | 0.0061 (7)    |
| C9  | 0.0554 (11) | 0.0409 (9)  | 0.0434 (9)  | 0.0079 (8)   | 0.0032 (8)    | 0.0044 (7)    |
| C10 | 0.0478 (11) | 0.0488 (10) | 0.0680 (13) | 0.0128 (8)   | 0.0168 (10)   | 0.0146 (9)    |
| C11 | 0.0440 (12) | 0.0807 (16) | 0.0786 (16) | 0.0031 (11)  | -0.0035 (11)  | 0.0250 (13)   |
| C12 | 0.0544 (11) | 0.0448 (9)  | 0.0431 (10) | 0.0062 (8)   | 0.0100 (8)    | 0.0028 (8)    |

## Geometric parameters (Å, °)

| S1—C6      | 1.7376 (17) | C3—C4      | 1.401 (3)   |
|------------|-------------|------------|-------------|
| S1—C7      | 1.7564 (17) | С3—Н3      | 0.9300      |
| S2—C7      | 1.7412 (17) | C4—C5      | 1.379 (3)   |
| S2—C8      | 1.8083 (19) | C4—H4      | 0.9300      |
| O1—C12     | 1.202 (2)   | C5—C6      | 1.394 (2)   |
| O2—C12     | 1.343 (2)   | С5—Н5      | 0.9300      |
| O2—C11     | 1.439 (3)   | C8—C9      | 1.525 (3)   |
| N1—C7      | 1.290 (2)   | С8—Н8А     | 0.9700      |
| N1—C1      | 1.389 (2)   | C8—H8B     | 0.9700      |
| N2—C12     | 1.346 (2)   | С9—Н9А     | 0.9700      |
| N2—C9      | 1.441 (2)   | С9—Н9В     | 0.9700      |
| N2         | 1.444 (3)   | C10-C11    | 1.509 (3)   |
| C1—C2      | 1.396 (2)   | C10—H10A   | 0.9700      |
| C1—C6      | 1.401 (2)   | C10—H10B   | 0.9700      |
| C2—C3      | 1.382 (3)   | C11—H11A   | 0.9700      |
| C2—H2      | 0.9300      | C11—H11B   | 0.9700      |
| C6—S1—C7   | 88.66 (8)   | C9—C8—S2   | 113.55 (13) |
| C7—S2—C8   | 103.28 (8)  | С9—С8—Н8А  | 108.9       |
| C12—O2—C11 | 109.30 (16) | S2—C8—H8A  | 108.9       |
| C7—N1—C1   | 110.61 (14) | С9—С8—Н8В  | 108.9       |
| C12—N2—C9  | 122.28 (17) | S2—C8—H8B  | 108.9       |
| C12—N2—C10 | 112.88 (17) | H8A—C8—H8B | 107.7       |
| C9—N2—C10  | 124.61 (16) | N2—C9—C8   | 110.74 (16) |

| N1—C1—C2    | 125.28 (16)  | N2—C9—H9A      | 109.5        |
|-------------|--------------|----------------|--------------|
| N1—C1—C6    | 115.23 (15)  | С8—С9—Н9А      | 109.5        |
| C2—C1—C6    | 119.48 (17)  | N2—C9—H9B      | 109.5        |
| C3—C2—C1    | 118.82 (18)  | С8—С9—Н9В      | 109.5        |
| С3—С2—Н2    | 120.6        | Н9А—С9—Н9В     | 108.1        |
| С1—С2—Н2    | 120.6        | N2-C10-C11     | 100.92 (18)  |
| C2—C3—C4    | 121.05 (18)  | N2—C10—H10A    | 111.6        |
| С2—С3—Н3    | 119.5        | C11—C10—H10A   | 111.6        |
| С4—С3—Н3    | 119.5        | N2             | 111.6        |
| C5—C4—C3    | 120.99 (18)  | C11-C10-H10B   | 111.6        |
| С5—С4—Н4    | 119.5        | H10A-C10-H10B  | 109.4        |
| C3—C4—H4    | 119.5        | O2-C11-C10     | 106.53 (17)  |
| C4—C5—C6    | 117.81 (17)  | O2—C11—H11A    | 110.4        |
| С4—С5—Н5    | 121.1        | C10-C11-H11A   | 110.4        |
| С6—С5—Н5    | 121.1        | O2-C11-H11B    | 110.4        |
| C5—C6—C1    | 121.83 (16)  | C10-C11-H11B   | 110.4        |
| C5—C6—S1    | 128.83 (14)  | H11A—C11—H11B  | 108.6        |
| C1—C6—S1    | 109.34 (13)  | O1—C12—O2      | 123.44 (19)  |
| N1—C7—S2    | 119.85 (13)  | O1—C12—N2      | 126.8 (2)    |
| N1—C7—S1    | 116.15 (13)  | O2—C12—N2      | 109.76 (17)  |
| S2C7S1      | 123.99 (10)  |                |              |
| C7—N1—C1—C2 | 179.93 (17)  | C8—S2—C7—S1    | -1.39 (13)   |
| C7—N1—C1—C6 | 0.0 (2)      | C6—S1—C7—N1    | 0.16 (14)    |
| N1—C1—C2—C3 | -179.38 (17) | C6—S1—C7—S2    | 179.01 (12)  |
| C6—C1—C2—C3 | 0.5 (3)      | C7—S2—C8—C9    | 82.41 (15)   |
| C1—C2—C3—C4 | -0.6 (3)     | C12—N2—C9—C8   | -92.9 (2)    |
| C2—C3—C4—C5 | 0.0 (3)      | C10—N2—C9—C8   | 92.9 (2)     |
| C3—C4—C5—C6 | 0.7 (3)      | S2—C8—C9—N2    | 179.53 (12)  |
| C4—C5—C6—C1 | -0.7 (3)     | C12—N2—C10—C11 | 6.1 (2)      |
| C4—C5—C6—S1 | 179.22 (14)  | C9—N2—C10—C11  | -179.26 (19) |
| N1-C1-C6-C5 | -179.97 (15) | C12-O2-C11-C10 | 7.0 (3)      |
| C2-C1-C6-C5 | 0.1 (3)      | N2-C10-C11-O2  | -7.6 (2)     |
| N1-C1-C6-S1 | 0.08 (19)    | C11O2C12O1     | 176.9 (2)    |
| C2-C1-C6-S1 | -179.82 (14) | C11—O2—C12—N2  | -3.2 (2)     |
| C7—S1—C6—C5 | 179.93 (17)  | C9—N2—C12—O1   | 3.0 (3)      |
| C7—S1—C6—C1 | -0.13 (13)   | C10-N2-C12-O1  | 177.8 (2)    |
| C1—N1—C7—S2 | -179.04 (12) | C9—N2—C12—O2   | -176.91 (16) |
| C1—N1—C7—S1 | -0.14 (19)   | C10—N2—C12—O2  | -2.1 (2)     |
| C8—S2—C7—N1 | 177.42 (14)  |                |              |

# Hydrogen-bond geometry (Å, °)

| D—H···A                                                                                          | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | $D\!\!-\!\!\mathrm{H}^{\ldots}\!A$ |
|--------------------------------------------------------------------------------------------------|-------------|--------------|--------------|------------------------------------|
| C11—H11B···O1 <sup>i</sup>                                                                       | 0.97        | 2.58         | 3.466 (3)    | 152.                               |
| C3—H3···O1 <sup>ii</sup>                                                                         | 0.93        | 2.59         | 3.282 (2)    | 132.                               |
| C5—H5···N1 <sup>i</sup>                                                                          | 0.93        | 2.54         | 3.445 (2)    | 163.                               |
| Symmetry codes: (i) <i>x</i> +1, <i>y</i> , <i>z</i> ; (ii) <i>x</i> , <i>y</i> -1, <i>z</i> -1. |             |              |              |                                    |

Fig. 1





Fig. 2